Tag: rooftop rainwater harvesting filter

Catch where it falls: Tradition for water revolution

Photo courtesy: Getty Images

We have not understood the science and art of harvesting rain on land. It’s time we learn from the wisdom that we have ignored and allowed to die

You know you are old when you realise that today’s conversation is a repeat of the past. That’s how I feel when I hear the current chatter about the potential of rainwater harvesting to fix the problem of water scarcity in our cities and villages.

For years now, we have known the importance of harvesting rain from rooftops and hill catchments and holding it in underground reservoirs, aquifers, lakes and ponds. Then why have we not made this technology work? Why have we failed to use this knowledge? This is what we must ask.

Let me tell you how I learnt about rainwater harvesting. It was back in the 1990s when Anil Agarwal, then director of the Centre for Science and Environment, was at the wheels of his new Maruti 800 — red in colour.

We were on our way to see grazing land regeneration in Bikaner. Suddenly there was something different on the ground. Anil stopped. He wanted to know what he was seeing.

It was in the shape of a flying saucer or an upside-down cup on a paved ground. We got off the car, walked over to the settlement and asked, “What is this?” As is often the case in India, such stupid questions from city people get very patient replies.

Photo courtesy: AKHILESH YADAV

“It is our water system, our kundi.” It made no sense. They explained. “See, we pave the ground with lime and make it drain to the middle. Then when it rains, even a little, all the water is harvested and channelised into the well, which is covered so that there is no contamination.” This small explanation changed our world. Changed it literally.

Anil calculated that the structure had huge potential. One hectare of land with just 100 millimetre (mm) of rain — that’s what deserts get on an average — is capable of harvesting 1 million litres of water. Not small.

A family of five would not need more than 10-15 litres a day for drinking and cooking. This comes to 4,000-5,000 litres in a year. This means one hectare can harvest enough water to meet the needs of 200-300 families.

Later, a few more experiences shaped my understanding of not just the potential of rainwater harvesting but its connection with all of us. We were in Cherrapunji, the wettest place on Earth or at least that’s what I was taught in school. There in a small government guest house I saw a big sign — water is precious, please use it carefully. Amazing.

A place with 14,000 mm of rain, enough to fill a high ceiling stadium, faces shortage of water! Anil and I had just returned from Jaisalmer — a city that had built a flourishing civilisation and a stunning fort of yellow sandstone despite receiving only 50-100 mm of rain. The answer we found was in the way the city had planned its rainwater harvesting, from rooftops to tanks—all to build a water-secure future.

Anil was so fascinated by this learning that he spent the next few years of his life teaching Indians the value of the raindrop. We have put this learning together in our 1997 book, Dying Wisdom: rise, fall and potential of India’s traditional water harvesting systems, which explains the sheer intricacy, innovation and ingenuity of the knowledge.

Every region of the country had its own unique method of harvesting rain, storing it and then using it. Every system had been adapted, in fact, evolved, to meet the special ecological needs, yet each system was an engineering marvel, designed to make the best of the region’s rain endowment.

Why then did the wisdom die?

First, the State took control from the local community or the households as the provider or supplier of water. This meant that harvesting rain was no longer a priority. Second, local groundwater, which was recharged using rainwater, was replaced by surface water, brought often from long distances in canals.

This is why rainwater harvesting has remained an idea whose time has still not come. The State cannot harvest rain; people have to be involved. It has to be done in every house; every colony; every village; and for every catchment.

The incentive to do this only comes when we are dependent on groundwater for our needs. If cities and even villages get piped water, from distant sources, who will harvest rain and why?

The other problem is we have not understood the science and art of harvesting rain on land. So, the catchments — land where the rain falls — have been encroached upon or distributed in the name of land-reform.

The drains that channelised rain to underground storage have been built upon or destroyed. Then how will we harvest the raindrop? We can’t and we won’t. This is why the cycle of drought and flood will continue and get exacerbated. So let’s really learn from the wisdom that we have ignored and allowed to die.

Neerain is proud to republish this article for spreading awareness about situation of water, for our stakeholders. Credit whatsoever goes to the Author

This article is published by: –

https://www.downtoearth.org.in/blog/water/catch-where-it-falls-tradition-for-water-revolution-65557

We would like to spread this for the benefit of fellow Indians.

Author:  Rashmi Verma

Publish On: Wednesday 10 July 2019

 

 

Roofs, rain and life: How to incentivize and implement rainwater harvesting

Photo courtesy:  Muench/Sustainable Sanitation Alliance (SuSanA) Secretariat

Co-author: Carmen Anthonj , Assistant Professor GeoHealth, Geo-Information Science and Earth Observation (ITC) of the University of Twente

While rainwater harvesting can result in numerous benefits for consumers and the water sector overall (read our previous blog here), it’s not always clear how to effectively promote and increase the prevalence of this practice.

RWH systems can be built relatively easily with local skills and resources, using simple and easy-to-maintain technologies that are inexpensive once installed. RWH systems can be modular in nature by allowing expansion, reconfiguration or relocation, and can easily be retrofitted to an existing structure or built during new construction.  However, despite the many benefits, households often find it difficult to implement rainwater harvesting.  The initial installation cost of RWH systems on residential housing is relatively high and a common barrier to adoptioni. Moreover, while there are legal, social and environmental barriers as well, recent experiences have documented means of overcoming those barriers and reinforcing water management practicesii.

There are many ways to encourage rainwater harvesting and improve its implementation, within which governments can play a strong role. The use of government subsidies as incentives can encourage the installation of RWH systems and increase the number of users, particularly among poorer households. The regulatory frameworks are essential for the effective design of these incentives, like in Brazil. In Germany, the promotion (by grants and subsidies) of RWH at the local government level resulted in equipping almost one third of new buildings built with rainwater collection systems. The Government of Indiaiii, for example, provides financial assistance for the installation of RWH systems. The Surat Municipal Corporation has made RWH mandatory for new buildings with a plot size of >4,000 m² and provides up to a 50% (up to Rs. 2,000) subsidy to citizens to encourage rainwater recharging. In Gwalior and Jabalpur, a 6% rebate in property tax in the year of completion of RWH construction is provided to the building owner as an incentive (CSE, 2019).

Promoting rainwater use through housing regulations that stipulate that all newly built buildings and structures must include rainwater roof catchments is common in Taiwan, Texas and Brazil. Although laws and other governmental policies are the key driver for the implementation of RWH, overall, robust policies to systematically promote the installation of RHW are often lacking or scattered. In Brazil for example, RWH is barely covered in legislation at the federal level, but more common at the local level. In absence of a national policy regulating RWH, some state laws and mainly municipal regulations have taken the task of covering this legislative gap, as local authorities may be more aware of specific problems for the region and thus implement specific legislation for the municipality. Large numbers of different laws and regulations at different scales complicate the process of implementation. Besides, the scattered legislation does not cover all aspects of RWH: the main goal of regulations is usually encouraging the installation of RWH systems, but incentives for the implementation are rare, and no legislation exists that addresses treatment to improve the quality of rainwater (da Costa Pacheco et al., 2017). Besides, coordination between state and non-state stakeholders in RWH, and residents lacking awareness or knowledge of policies, are common challenges (Bui Thi Thuy et al., 2019; Matto & Jainer, 2019).

A Prospective Vision for RWH 

Photo courtesy:Akruti Enviro Solutions Pvt.Ltd.

The strategic management of rainwater can reduce disaster risk for communities faced with water scarcity, droughts or flood risks. Access to clean water is essential during the pandemic for handwashing, hygiene and preventing the spread of COVID-19. The scalability of RWH must ensure that water is provided and available when needed free of contamination, and as a resilience option in remote rural areas that are hit hard by climate change and rainfall variability. All the efforts to bring these solutions to increase water availability must carefully consider cost-effectiveness and co-benefits for small-scale irrigation and other productive uses of water. Integrated research that involves geospatial analysis and remote sensing can provide the evidence to demonstrate a stronger case to expand RWH globally, and improve their operational, financial and environmental sustainability.

Neerain is proud to republish this article for spreading awareness about situation of water, for our stakeholders. Credit whatsoever goes to the Author.

Neerain is proud to republish this article for spreading awareness about situation of water, for our stakeholders. Credit whatsoever goes to the Author.

This article is published by: –

https://blogs.worldbank.org/water/roofs-rain-and-life-how-incentivize-and-implement-rainwater-harvesting

We would like to spread this for the benefit of fellow Indians.

Author:  CHRISTIAN BORJA-VEGA

Publish On: NOVEMBER 12, 2020

Water crisis in India: Threats and Opportunities for India Inc

India faces daunting water security challenges. The demands of a rapidly industrializing economy and urbanizing society come at a time when the potential for augmenting supply is limited and water issues have increasingly come to the fore. While India hosts approximately 17 percent of the world’s population, it holds only about four percent of its required annual water resources.

Photo courtesy: Adobe stock

India faces daunting water security challenges. The demands of a rapidly industrializing economy and urbanizing society come at a time when the potential for augmenting supply is limited and water issues have increasingly come to the fore. While India hosts approximately 17 percent of the world’s population, it holds only about four percent of its required annual water resources.

In India, more than 600 million people are facing an acute water shortage. About three-quarter households do not have a drinking water facility. Currently, India ranks 120th among 122 countries in the water quality index. By 2030, India’s water demand is expected to be double to that of supply that implies not only water scarcity for numerous people but also a loss of around 6 percent to GDP. This underscores the need for strategic interventions to promote water use efficiency, both at the micro and macro level.

India Inc is an important stakeholder in India’s sustainability story. It also accounts for substantial water use. Various sectors of the industry are competing to use limited water resources that put pressure on the available supply of water and groundwater resources. The UN’s World Water Assessment Program warns of the stark implications, such as lack of freshwater resources on economic prosperity and security.

WATER TREATMENT/OPPORTUNITIES AND REUSE

Photo courtesy: Shutterstock

India Inc has taken cognizance of the magnitude of the water crisis and the role they can play to mitigate it. The corporate should see it as the shared responsibility of companies across sectors to join hands with communities and governments to work on programs for water conservation, recharge and wastewater treatment. On the lines of minimizing the carbon footprint, corporate should also incorporate water management not only as its CSR goals but as a component of its business goals and sustainability plan.

Experts should converge and deliberate on establishing a sustainable water management strategy that will serve as the guideline for the entire industry. They should focus on optimization of water usage for industrial purposes, omitting outdated processes and technology and adoption of suitable recycling practices.

Water forms an intrinsic component of manufacturing cycles of the industry. Corporate has to be mindful of achieving sustainable water consumption while ensuring profitability and fulfilling their business goals.

The role of technology and research and development in encouraging the best water conservation techniques cannot be underestimated. New-age technologies such as smart irrigation systems with ICT and remote sensing are potent tools to encourage water conservation. The onus should be on corporate to foster innovation come up with out of the box solutions as they possess the necessary resources and expertise.

The corporate can also play an instrumental role in devising mass awareness campaigns and information dissemination educating farmers and common populace on the need to use water judiciously.

Equally important is the role of information sharing and collaboration among companies that will encourage the mapping of goals against achieved targets and improvise water management practices. Sharing of technological innovations offer a useful path to greater, mutually beneficial cooperation.

The comprehensive assessment of water requirement and usage by the corporate is essential to facilitate informed policy-making by the government and plugging the loopholes in the policy framework on water.

India Inc must gear to adopt water management on a priority that would enable the entire country to benefit from it through genuine and open collaboration.

Neerain is proud to republish this article for spreading awareness about situation of water, for our stakeholders. Credit whatsoever goes to the Author.

This article is published by: –

https://bwsmartcities.businessworld.in/article/Water-crisis-in-India-Threats-and-Opportunities-for-India-Inc/10-06-2020-285981/

We would like to spread this for the benefit of fellow Indians.

Author: Dr. Puneet Gupta

Publish On: June, 2020

 

 

Panel recommends new central body to mitigate water woes due to lack of agency coordination

The Parliamentary Standing Committee report also found excessive dependence on groundwater

Photo: iStock

State- and central-level bodies that currently bear responsibility for issues related to water, lack coordination between them, a Parliamentary Standing Committee report has noted.

The report, tabled in the Lok Sabha two weeks ago, also recommended the Union Ministry of Jal Shakti (water resources) constitute a central body with representation from the bodies.

The bodies, alluded to by the committee, include:

  • The Union Ministry of Rural Development, and Agriculture and Farmers’ Welfare
  • State departments, state and central pollution control boards
  • Dedicated authorities such as the Central Ground Water Board (CGWB) and the Central Ground Water Authority (CGWA)

Groundwater is a valuable but diminishing resource, concluded the report accessed by DTE.

State- and central-level bodies that currently bear responsibility for issues related to water, lack coordination between them, a Parliamentary Standing Committee report has noted.

The report, tabled in the Lok Sabha two weeks ago, also recommended the Union Ministry of Jal Shakti (water resources) constitute a central body with representation from the bodies.

The bodies, alluded to by the committee, include:

  • The Union Ministry of Rural Development, and Agriculture and Farmers’ Welfare
  • State departments, state and central pollution control boards
  • Dedicated authorities such as the Central Ground Water Board (CGWB) and the Central Ground Water Authority (CGWA)

Groundwater is a valuable but diminishing resource, concluded the report accessed by DTE on March 31, 2023.

The Committee observed that dependence on groundwater for irrigation was excessive. This was so because water-intensive crops like paddy and sugarcane command higher minimum support prices (MSP), it noted.

Prior to this, the Committee couldn’t finalize a report and the subject was again taken up in its successive tenures — 2020-21, 2021-22, and 2022-23 — for detailed examination.

The development came in concurrence to the release of a United Nations report raising grave concern on “groundwater depletion as a global issue”. The latter had brought to light the reporting of significant groundwater depletion in China, India, Pakistan, the United States, and Australia

“Laws on groundwater management were passed in 19 states based on a model Bill circulated in 1970 and last revised in 2005. The Committee observed difficulties in implementing these laws due to the lack of guidelines,” it was argued in the Lok Sabha.

The Committee, meanwhile, recommended the Department of water resources, river development, and ganga rejuvenation takes urgent action in this regard.

The three departments should engage with the Department of Agriculture and Farmers’ Welfare to encourage fewer water-intensive cultivation crops and cultivation patterns, it asserted.

The Committee went on to observe widespread groundwater contamination “resulting from industrial activity”. They recommended that more funds under Jal Jeevan Mission (JJM), which aims to provide households with safe drinking water, can be allocated to areas with groundwater contamination.

“A lack of sharing of data and coordination between bodies responsible for addressing groundwater pollution such as state government departments, pollution control boards, and agencies such as the CGWA,” it underlined and recommended the proposed central groundwater authority should coordinate between them.

“The authority, once formed, should formulate a policy on groundwater pollution,” the report said.  Personnel and resource shortages hinder state and central pollution control boards, it was further alleged. In this wake, the Committee insisted on addressing the shortage.

It further recommended amendment of the Water (Prevention and Control of Pollution) Act, 1974, “to enable pollution control boards to impose monetary penalties, as a less severe penalty than the outright closure of industrial units

More ‘reforms’?

Photo credit: istock

The panel also recommended the modification of schemes like Mahatma Gandhi National Rural Employment Guarantee Scheme and Pradhan Mantri Krishi Sinchayee Yojana to support the rejuvenation of existing water bodies.

There are schemes for recharging groundwater through rainwater harvesting in urban areas, such as Atal Mission for Rejuvenation and Urban Transformation (AMRUT). The Committee recommended that the Jal Shakti ministry coordinate these efforts.

Urban local bodies should be given more funds to maintain water bodies. The Atal Bhujal Yojana provides central financial assistance to state governments and local bodies for projects related to groundwater management.

The Committee recommended the scheme’s extension to all states facing groundwater scarcity as it is currently being piloted only in seven states.

Parallel to the release dates of the two mentioned reports, DTE had analyzed the groundwater crisis in Punjab state. This was also in the wake of the 2023 Global Water Conference organized in New York City in March, with an aim to raise awareness, define a roadmap and advance the water agenda.

Neerain is proud to republish this blog for spreading awareness about the situation of water, for our stakeholders. Credit whatsoever goes to the Author.

 

This blog is published by: –

https://www.downtoearth.org.in/news/water/panel-recommends-new-central-body-to-mitigate-water-woes-due-to-lack-of-agency-coordination-88616

 

We would like to spread this for the benefit of fellow Indians.

Author: Zumbish

Publish On: 04 April 2023

 

 

Why Rainwater Harvesting is Crucial to Solving India’s Water Woes

India is reeling under the most severe water crisis in its history for several reasons including two consecutive monsoons that failed.

According to a Composite Water Management Index (CWMI) report released by NITI Aayog nearly 600 million people, which is almost 50% of the country’s population, are facing water shortage issues right now.

One of the many options that we have to ease the water shortage issue is implementing rainwater harvesting. Given the critical situation that we are in, it’s now more important than ever to install rainwater harvesting systems and make it a mandatory fixture in houses and apartments.

In this post, we explore the reasons behind the water crisis and how rainwater harvesting can help.

Why is India facing a severe water shortage?

In addition to inadequate monsoons, there are several reasons why India’s water supply is diminishing rapidly.

Depletion of groundwater

According to the UNESCO World Water Development Report, India is the biggest extractor of groundwater in the world, drawing 260 cubic km per year, which is more than China and the US combined. That comes up to 25% of the groundwater extracted globally. With 21 Indian cities expected to run out of groundwater, India is faced with an alarmingly dry future with the need to not just replenish its water sources but also change the way it sources water.

Infrastructure and wastage

India’s shoddy infrastructure has led to improper distribution and large amounts of water being wasted. Statistics from the Central Water Commission reveal that India receives as much as 4,000 billion cubic metres of rainfall, but only a mere 8% of that is captured efficiently. Leaky pipes, limited or ageing storage infrastructure like dams, and lack of recycling systems like rainwater harvesting have worsened India’s water crisis.

Uneven distribution

India’s pipelines are notorious for not just being old but also for not being present in hilly terrains or rural areas. Even if there are connections, the supply is highly restricted and is time-bound, making it challenging to access. This, in turn, has given rise to the water mafia, which ensures that water reaches only those who can afford it.

Contamination and pollution

India is fast losing its water bodies to rapid real estate development, environmental degradation, and industrial pollution. The lack of proper wastewater treatment systems has also compounded the issue.

How rainwater harvesting can help

Recycling and reusing water is important, but it needs to be amply supported by rainwater harvesting. No doubt, contaminated lakes and ponds are a big source of precious water, but it is much easier to simply store rainfall. It is more affordable, less time-consuming, and easier to implement than the complicated systems that are required for wastewater treatment.

Rainwater harvesting also helps in reducing India’s dependence on groundwater and private sources like tankers.

There are myriad ways in which rainwater can be captured and stored like installing rain barrels with pipes, hanging rain funnelling chains, rooftop containers that channel rainwater into sumps and borewells, and if you have space, then setting up a mini-reservoir in your garden.

Following any of these simple DIY processes can drastically reduce or even eliminate your water bills, and cushion the impact as well as slow down climate change. Most importantly, it can help an entire country quench its thirst with unlimited water.

Neerain is proud to republish this article for spreading awareness about situation of water, for our stakeholders. Credit whatsoever goes to the Author.

This article is published by: –

https://roofandfloor.thehindu.com/raf/real-estate-blog/rainwater-harvesting-crucial-to-solving-indias-water-woes/.\

Author:  Prof. SWATI NAIR

Publish On: 18TH JULY 2019

Let’s not go for a dry run

If you knew that water covers 70% of our planet, you would imagine there’s no scarcity of this precious resource. If you also knew that naturally occurring freshwater, with low levels of dissolved solids and other salts, used for drinking, bathing, washing, and irrigation, constitutes 3% of the world’s water, you’d be alarmed. More so when you realize that two-thirds of such freshwater is frozen in glaciers and is unavailable.

The World Wide Fund for Nature estimates that 1.1 billion people lack access to water globally and 2.4 billion high purity. suffer from inadequate sanitation, re- resulting in diseases like cholera, typhoid, diarrhea, and other waterborne diseases. The scarcity of water also affects the growth of crops, contributing to food insecurity.

In addition, it has manifested in many civil and international conflicts with Iraq, Iran, Afghanistan, Yemen, Syria, Darfur, Sudan, Somalia, Peru, and Brazil having experienced severe conflicts over water.

What are the main causes of this scarcity? Climate change is a major contributor. Higher temperatures enhance evaporation levels, disrupt rain patterns, cause flooding and deplete water reserves. Overpopulation is another, particularly in water-stressed areas such as West Asia, India, and China. Inefficient water use, mainly for grain production and in the textile, farm products, beverages, and automotive industries are also critical.

The strain on the earth’s finite resources makes this an urgent issue, calling for new visioning, higher-order regulation, reclamation, and the deployment of potent technologies.

Photo courtesy: Chris Madden

In the words of Lucas van Vuuren of the National Institute of Water Research in South Africa, ‘Water should not be judged by its history, but by its quality.’ Widely used processes for reclamation include:

  • Membrane bioreactor solutions that combine membrane processes and biological treatment, involving bacteria and protozoa.

  • Ultrafiltration, a pressure-driven barrier that separates small particles and molecules to produce water of high purity.

  • Reverse osmosis, typically used for desalination of pre-treated water for drinking purposes that flushes out bacteria, pathogens, and pesticides.

  • Electrodialysis reversal, a durable membrane system that relies on polarity reversal for treating turbid wastewater; and thermal evaporation and crystallization for treating complex wastewater.

The fact that the energy content in waste is far greater than the energy needed for its treatment is what’s encouraging new thinking on the subject.

Smart ideas combined with digital technology can yield numerous and substantial benefits.

Checking water consumption is an excellent first step. Smart meters enable consumption monitoring and analytics to sense patterns and provide insights to encourage conservation. San Francisco reduced voluntary water consumption by 10% this way.

Digital tools are particularly useful – in providing real-time information to dissuade high-cost consumption during peak periods. Singapore has cut the demand for water by 30% with such proactive interventions.

Overpopulation is another cause for scarcity, particularly in water-stressed areas such as West Asia, India, and China.

Photo Courtesy: Peepli Live

Sensors can continuously monitor quality parameters, including pH levels, bacteria, residual chlorine, temperature, turbidity, and contaminants. Early detection ensures timely mitigation. Many cities, including Chicago, New York, and London, use digital sensors to reduce waterborne diseases.

Water treatment plants can also reduce energy consumption with real-time monitoring. Advanced analytics and modeling techniques can predict demand and optimize pumping and maintenance schedules, improving operational efficiencies significantly.

Sensors can detect leaks in water pipes and distribution systems. Earl y action can save substantial water losses, optimize maintenance schedules, and extend the lifespan of the infrastructure. Barcelona has deployed sensors with a GIS system to isolate and reduce water leakage in aging pipes by 25%. Smart instances by 50%.

In flood situations, digital technologies like remote sensing, advanced analytics, and predictive modeling are used extensively to create early warning systems and facilitate pre-emptive actions, vastly improving emergency response.

World Bank data suggests India is a highly water-stressed country with 18% of the world’s population and just 4% of its water. NITI Aayog predicts that 21 Indian cities will run out of groundwater in 2030, affecting 40% of India’s population. A recent EY article, “Water 4.0: Digital Journey of Water’, underscores how advanced technologies

When will we create water in the lab at scale combining two hydrogen atoms with one oxygen atom that feeds flames?


Photo Courtesy: Brain On

like artificial intelligence (AI), advanced analytics, the Industrial Internet of Things (IoT), smart grids, neural networks, and digital twinning dominate ‘Smart Water’.

It references the Delhi Jal Board’s use of IoT, AI, and predictive analytics to treat wastewater and signal high water levels in sewers and potential pi- pipeline bursts; and Central Water Com- mission’s work that leverages machine learning (ML) and inundation modeling to predict flooding and sends out timely alerts, a system now being scaled up to cover most river systems across India.

What’s ahead? When will we create water in the lab at scale-combining two flammable hydrogen atoms with one oxygen atom that feeds flames? The jury’s out on that. Extracting water from the air as water vapor, like the Whisson Windmill that produces 2,600 gallons daily at low cost, seems a worthy alternative.

It’s riveting to see technology being used not just to avoid war among communities and nations in a water-starved world but to calm the wrath of nature.

Neerain is proud to republish this Article for spreading awareness about the situation of water, for our stakeholders. Credit whatsoever goes to the Author.

This article is published by: –

The Economic Times

We would like to spread this for the benefit of fellow Indians.

Author: Anil Nair

Publish On: July 1, 2023

 

 

Investment in water conservation required to build climate ‘resilience’ in rural India

The climate change phenomenon seems omnipresent with its impacts being felt around us in various ways.  However, in a vast, tropical, and developing country like India, one of the areas that is more acutely felt, is the area of ‘water’ – the medium through which we feel the painful effects of climate change.  

With our gargantuan population and an increasing ‘thirst’ for water across cities, industries, and agricultural communities, India has a pronounced vulnerability to climate change – simply because its agriculture system feeds 17.5% of the global population, all the while harnessing just 2.4 % of land and only 4% of the water on the planet.  It is a delicate and fragile balancing act for our humble farmers, 90% of whom are small and marginal landholders.  

Never before has water conservation been so vital, with conservation techniques being the fundamental difference between a ‘water starved community’ that relies on expensive and erratic water tanker delivery, or between a ‘water prosperous community’ which is self-sufficient in terms of water, with all year around access to this precious, life and livelihood giving, resource. 

This intimate relationship between climate change and water means that investing in water conservation techniques is a crucial part of fostering climate change resilience – particularly among vulnerable rural populations – people, communities, and an agricultural industry that these communities are built upon, and that feeds the nation.

Photo Courtesy: Shutterstock

Snapshot from ‘the Ground’

What does this climate change-induced ‘water stress’ look like on the ground in rural India?  

  • An increased frequency of drought means that less water is available, and the subsequent rises in temperature only increase a farmer’s demand of water for crops.  

  • High-intensity rainfall increases soil erosion and results in high water runoff – runoff that takes with it precious topsoil that silts up water harvesting structures, reducing their ultimate water storage capacity.  

  • Short duration, high-intensity rainfall which is exacerbated by climate change, also results in low groundwater recharge – reducing the availability of groundwater for usage.  

  • Irregular rainfall distribution and long intermediate dry spells during monsoon severely impact crop yield in rainfed areas.

However, across the country, there are many leading examples of how water conservation – coordinated efforts to increase the supply of water, as well as reducing the demand for it – has changed the water narrative in villages.  Whilst it is easy to shrug off the responsibility of water conservation methods to Governments to lead the charge, there is, in fact, a role to be played by everyone – villagers, communities, people’s institutions, corporates, and civil society – in the uptake of various water conservation measures to generate ‘water resilient communities in rural India.

But it requires a two-pronged approach.

  • Increasing Water Supply

Water resilience can be fostered, by increasing the supply of it for drinking, sanitation, and irrigation purposes – working with households, farmers, and communities to develop mechanisms to simply capture rainwater as and when it falls enabling percolation and recharge– storing it for use in the ‘dry months’ India is renowned for.

Photo Courtesy: Adobe Stock

At a household level, investment in a rooftop rainwater harvesting system (RRWHS) is proven as one of the cost-effective ways to increase safe drinking water supply.,. Self-sufficient households in terms of water, are not only better equipped to survive severe climate variability and drought, but are empowered with a responsibility to both capture and efficiently manage the use of their own water. An RRWHS constructed with a 12,000-liter capacity can be sufficient to meet the drinking and cooking water needs for a family of 5-6 members, for at least 250 days in a year – meaning a family’s needs are met for the rest of the year, post monsoon. This is a game-changer for families living in remote and water-stressed -communities as the quality of water is also assured.

Additionally, the revival and restoration of traditional water harvesting structures which are scattered across the country, is another priority in order to increase water supply.  Whilst most of these have fallen into disrepair, these unique structures have helped generations of Indians for millennia, to survive the harsh climatic conditions of remote India.  Sadly, during the colonization of India, the British replaced the decentralized, communal responsibility of managing water, with a centralized one where the Public Works Department took control of water. As a result, people gave up the responsibility of managing and caring for water. But these incredible structures still exist and many simply lie in disuse, in need of restoration and repair – with work, they can be revived to their former glory. 

With many communities facing issues with contamination of water supplies, like salinity and increased levels of fluoride due to over-extracted groundwater reserves, building the capacity of a community to test its own water and identify local solutions is yet another solution to making communities self-reliant when it comes to water.

  • Reducing Water Demand

However, an increase in water supply alone is not enough to generate self-sufficient, resilient communities when it comes to water.  With the agricultural sector consuming 90 percent of all water drawn across the country as reported, primarily for flood-irrigating water-intensive crops, there is a drastic need to convert farmers to more water-efficient agricultural practices.

Flood irrigation currently delivers only 35-40 percent water use efficiency, as opposed to micro irrigation which has up to 90 percent efficiency. Despite this, the coverage of drip (2.13 percent) and sprinkler (3.30 percent) methods of irrigation is meager compared to its total potential in India. This presents an exciting opportunity for widescale investment in micro irrigation as a key approach to reducing the demand for water. The slow spread of micro irrigation is not mainly due to economic reasons, but due to a lack of awareness among the farmers about the real economic and revenue-related benefits of it. In fact, by adopting micro-irrigation, farmers experience an increase in productivity – by being able to precisely control water application at the plant roots, crop yield is increased, resulting in an increase in profits. Additionally, farmers who adopt micro irrigation experience a reduced cost of cultivation – enhancing overall profits.  It is a win-win on all fronts.

Photo Courtesy: Pngtree

Additionally, according to experts at the Central Water Commission, India’s cropping pattern highlights the rampant cultivation of water-intensive crops such as sugarcane, paddy, cotton, and banana, across water-stressed regions of India. As agriculture is the largest consumer of freshwater in India, the shift from water-intensive crops to less water-intensive crops such as pulses, millets, vegetables, legumes, and oilseeds, can spare large quantities of fresh water in India, with minimal cost, for the benefit of farmers.  An investment in farmer education and capacity building is required here.

 Conclusion

The evidence is clear.  The climate is changing and will continue to do so, affecting all communities, primarily through the resource of water. Climate change will affect the availability, quality, and quantity of water for basic human needs and livelihoods, threatening the fundamental human rights to water of potentially billions of people. Strategic water conservation measures can be the key to creating climate-resilient rural communities, which have the means, in terms of water, to not just survive, but thrive & prosper, as they continue to grow food for the rest of the country.

Neerain is proud to republish this blog for spreading awareness about the situation of water, for our stakeholders. Credit whatsoever goes to the Author.

This blog is published by: –

https://timesofindia.indiatimes.com/blogs/voices/investment-in-water-conservation-required-to-build-climate-resilience-in-rural-india/

We would like to spread this for the benefit of fellow Indians.

Author: Pearl Tiwari

Publish On: October 13, 2022

 

 

If we’re smart about water, we can stop our cities from sinking

As more cities sink, rethinking how we use groundwater can ease pressure on precious aquifers

The land around Delhi’s Indira Gandhi International Airport has sunk dramatically over the years. Photo Courtesy: Rehman Abubakr

When you come into land at Delhi’s Indira Gandhi International Airport it may not be obvious from the sky that the land in the surrounding area has been sinking more than 17 centimetres a year.

The main reason for this subsidence is the excessive pumping of groundwater

As the water is removed from underground aquifers, the soil above begins to compact and sink. This can happen gradually, over years, or suddenly, in just hours. In either case, the effects can be long-lasting and expensive to repair.

India is ranked number one for excessive groundwater usage.  Groundwater is a vital resource for our planet’s survival. It sustains agriculture, provides drinking water, and supports ecosystems. 

However, overuse of groundwater is leading to a new problem: Land subsidence, which not only causes damage to infrastructure and buildings but threatens the livelihoods of millions of people around the world.

In India, the northern Gangetic plains are exploited more than anywhere else. The impact of disappearing groundwater is accelerating changes in the shape of the land surface. But residents and authorities are fighting back, changing years of water usage habits to stop the land from sinking beneath them.

Photo Courtesy: Pinterest

recent study in Nature reported alluvial aquifers in India in the Delhi-National Capital Region have sunk and continue to sink at a substantial rate. Around Kapashera, near the international airport, land subsided by 11 cm per year during 2014-2016.

That increased to more than 17 cm per year in the two years that followed.

On the vulnerability of Delhi to subsidence, Ryan Smith, assistant professor at Missouri University of Science and Technology said: “Aquifers that are pressurized and have lots of clay are most prone to subsidence.” 

The soil in Delhi is mainly thick alluvium, which is clay-rich and thus vulnerable. It can cause significant damage to buildings, bridges, pipelines, railways, and canals.

Even minor subsidence in densely populated areas can put lives at risk. In cases where the rate of sinking is differential, It might lead to the weakening of foundations or develop cracks in the buildings.

A fifth of the world’s population lives in areas that are at risk of subsidence, according to recent reports.  In some cities, the problem is so severe that buildings have sunk by several meters.

The consequences can be devastating, as entire communities are left vulnerable to flooding, infrastructure damage, and water scarcity.

There’s been land subsidence in various parts of the world where exploitation of groundwater has been high. 

One of the most prominent cases is in Mexico City, where buildings have been tilting due to land sinking. 

In Indonesia, over the last decade, the capital Jakarta has sunk more than 2.5 meters. The problem is so grave the government is planning to shift the capital. 

Countries like Iran and China too, have witnessed prominent land subsidence in the last few decades.

It is possible to reduce land subsidence if groundwater replacement is equivalent to what’s taken out, or by using water sustainably. 

Photo Courtesy: Adobe Stock

Rainwater harvesting is an effective way to boost groundwater, especially in dry cities, which receive low rainfall and have a lot of alluvial soil, which is prone to subsidence due to its softness.

In Delhi’s Dwarka region, residents and the government had been working on a plan to supply piped water to the area by 2016. Heavy fines were imposed on buildings still using borewells and residents began harvesting rainwater to increase the water table in the area.  

Two large lakes were cleaned up and rejuvenated which helped increase groundwater levels.

The government also decided that only treated sewage and surface water should be used to water public parks and grounds.

Town planner Vikas Kanojia said steps like reviving old reservoirs and harvesting rainwater helped Dwarka reduce its reliance on groundwater and reverse the trend of land subsidence. “This can be a model for other areas in Delhi and India”, he said.

Dwarka’s example shows that it’s possible to deal with the issue of subsidence, however in more arid regions this process is difficult. 

Iran, for instance, is home to some of the fastest sinking valleys in the world, but uncontrolled mining continues. Per capita water supplies have plummeted more than 65 percent in recent decades and it could be worse in the future. 

The government has invested heavily in technologies such as desalination. “Technology can help, but what we need is a long-term program to conserve water resources involving farmers, industries, and local communities and at the moment there isn’t one,” said Mahdi Motagh, a senior scientist from GFZ Potsdam.

The issue of subsidence is becoming more serious and widespread, affecting the lives of millions of people around the world. However, there are solutions, as demonstrated by the efforts of residents and the government in the Dwarka region of Delhi. 

Rainwater harvesting, reviving old reservoirs, and using treated sewage and surface water can help to reduce reliance on groundwater and reverse land subsidence. But what’s more important is to address this issue through proper tracking and monitoring and long-term programs involving farmers, industries, and local communities.

This blog is published by: –

https://www.downtoearth.org.in/blog/urbanisation/if-we-re-smart-about-water-we-can-stop-our-cities-sinking-89417

We would like to spread this for the benefit of fellow Indians.

Author: Shagun Garg

Publish On: 18 May 2023

ગુજરાતીએ બનાવેલી પ્રોડક્ટની US સહિત 5થી વધુ દેશોમાં માગ : મોટા પેકેજની નોકરી છોડી વોટર હાર્વેસ્ટિંગ માટે પાણી સાફ કરતું સસ્તું ડિવાઇસ બનાવ્યું, કંપનીનું ટર્નઓવર કરોડોમાં

ચોમાસાની શરૂઆતથી જ દેશનાં અનેક રાજ્યોમાં પૂરની સ્થિતિ જોવા મળી. ગુજરાતમાં પણ અનેક જગ્યાએ વરસાદના કારણે ઘણા વિસ્તારો જળબંબાકાર થઈ ગયા હતા. પરંતુ બીજી તરફ ચોમાસા સિવાય દેશભરમાં પાણી માટે ઘણા લોકોને વલખાં મારવાં પડે છે. પાણી એ આપણી મૂળભૂત જરૂરિયાતોમાંનું એક છે. પરંતુ અવ્યવસ્થાના કારણે પાણી જીવલેણ મુસીબત પણ બની શકે છે. આવી પરિસ્થિતિનો વિચાર કરીને એક ગુજરાતી યુવાન અમિત દોશીએ પોતાની સૂઝબૂઝથી એક ખાસ પ્રોડક્ટ બનાવી છે.

17 વર્ષ ખાનગી કંપનીમાં કામ કર્યું, વિદેશમાં જઈને પણ નોકરી કરી આવ્યા, છેવટે હિમ્મતભેર એક પગલું ભર્યું અને આ ગુજરાતીએ એવી કંપની બનાવી જેનું ટર્નઓવર હવે કરોડોમાં છે. કારણ કે તેમણે પોતાના અનુભવના આધારે બનાવેલી એક વસ્તુની જરૂર આજના સમયે એટલી જરૂરી છે કે મોટા-મોટા બિલ્ડર પણ તેમનો સંપર્ક કરી રહ્યા છે. અમેરિકા સહિત વિશ્વના 5થી પણ વધુ દેશોમાં પણ આ પ્રોડક્ટની માગ છે.

અમિત દોશીએ કહ્યું, ‘મારું મૂળ વતન વિજાપુર છે. અત્યારે અમદાવાદ રહું છું. મેં વર્ષ 1996 ગવર્નમેન્ટ પોલિટેક્નિકમાંથી ડિપ્લોમા ઇન પ્લાસ્ટિક એન્જિનિયરિંગ પૂરું કર્યું હતું. ત્યાર બાદ વર્ષ 1997થી 2001 સુધી મેં સિન્ટેક્સ કંપનીમાં નોકરી કરી હતી. ત્યાર પછી નાઈજીરિયાની એક કંપનીમાં એક વર્ષ સુધી કામ કર્યું પરંતુ પિતાનું અવસાન થતાં હું પરત ફર્યો હતો અને ફરી સિન્ટેક્સ કંપનીમાં વર્ષ 2002થી 2014 સુધી કામ કર્યું હતું. જ્યાં ટેક્નિકલ સર્વિસ ડિપાર્ટમેન્ટથી શરૂ કરી એન્વાયરમેન્ટલ ડિવિઝનના માર્કેટિંગ હેડ તરીકે નોકરી કરી. મુખ્યત્વે સોલિડ વેસ્ટ મેનેજમેન્ટનું કાર્ય હું સંભાળતો હતો.’

વરસાદી પાણીને વોટર હાર્વેસ્ટિંગ માટે સાફ કરવા ડિવાઈસ બનાવનાર અમિત દોશી.

‘જ્યારે વર્ષ 2014માં મેં નોકરી છોડવાનો વિચાર કર્યો ત્યારે સૌથી પહેલો પ્રશ્ન એ હતો કે આગળ શું કરવું? પોતાનો બિઝનેસ કરવાનો વિચાર હતો. બિઝનેસ પણ એવો જે સામાન્ય માણસની તકલીફને દૂર કરે. મેં અલગ-અલગ વિષયો પર અભ્યાસ કર્યો. પર્યાવરણમાં એફ્લૂઅન્ટ ટ્રીટમેન્ટ, સુએજ ટ્રીટમેન્ટ, વોટર ડિસ્ટ્રિબ્યુશન, વોટર પૉલ્યુશન, એર પૉલ્યુશન, વોટર મોનિટરિંગ આવાં અનેક ક્ષેત્રોમાં મોટા પ્રમાણમાં બિઝનેસ થઈ રહ્યો છે. આ સ્ટડી કર્યા પછી મને લાગ્યું કે નોકરી છોડ્યા બાદ બિઝનેસ કરીશ તો મારી પાસે તેને શરૂ કરવા માટે રૂપિયા નથી. મારી પાસે ફક્ત મારો અનુભવ છે. મારી આવડત, કામ કરવાની બૌદ્ધિક ક્ષમતા છે, માર્કેટિંગની આવડત અને પર્યાવરણ પ્રત્યે મારું પેશન છે. ત્યારે વિચાર આવ્યો કે રેઇન વોટર હાર્વેસ્ટિંગ એક એવો વિષય છે જેને લઈને હજી પણ લોકો જાગૃત નથી. ભારતના મોટાભાગના લોકોએ હજુ રેઇન વોટર હાર્વેસ્ટિંગના કોન્સેપ્ટને અપનાવ્યો નથી. આપણે ત્યાં સારો એવો વરસાદ થતો હોવા છતાં પણ 60 ટકાથી વધુ વસતિ પાણીની તંગી ભોગવી રહી છે. પાણી લેવા દૂર-દૂર જવું પડે છે. આપણા દેશે તો દુનિયાને વાવ જેવાં સ્થાપત્યો દ્વારા વરસાદી પાણીના સંગ્રહનો વિચાર સદીઓ પહેલાં આપી દીધો હતો. પણ આજની પરિસ્થિતિ કથળી ગઈ. કારણ કે એ સિદ્ધાંતો આપણે મોડર્ન સ્ટાઇલમાં અપનાવી ન શક્યા. આજના સમયની જરૂરિયાત મુજબ તેમાં ફેરફાર ન કર્યા. જેના કારણે આપણે એ તરફ પછાત રહી ગયા. મને થયું કે આ ક્ષેત્રે ખૂબ કામ કરવાનું બાકી છે. આમાં કંઈક કરીએ તો સામાન્ય માણસની પાણીની તકલીફ દૂર કરી શકીએ.’

ધાબા પરથી પડતું પાણી સાફ કરતું ડિવાઈસ
‘નોકરી છોડ્યા પછી વરસાદી પાણીના સંગ્રહ પર અભ્યાસ કરીને કન્સલ્ટિંગનું કામ શરૂ કર્યું. વર્ષ 2014થી 2018 સુધી વરસાદી પાણીના સંગ્રહને લગતા કામકાજ અને અલગ-અલગ પ્રોડક્ટસ શરૂ કરી. આ દરમિયાન વિચાર આવ્યો કે સામાન્ય લોકો હજુ પણ બોરવેલ કે પાણીના એક જ સ્ત્રોત પર નિર્ભર છે. બોરવેલ સુકાઈ જાય કે ઓછું પાણી આવે તો લોકોને ઘણી મુશ્કેલી થાય છે. જ્યારે એ જ વિસ્તારમાં ચોમાસામાં સારો એવો વરસાદ પણ થાય છે. પરંતુ આ પાણીના સંગ્રહ માટે એવી કોઈ વસ્તુ નથી. મેં આ દિશામાં કામ શરૂ કર્યું. મને થયું કે એવું કોઈ નાનું ડિવાઇસ બનાવીએ જેનાથી ધાબા પર રહેલો કચરો વરસાદી પાણીમાંથી દૂર થઈ જાય અને વરસાદી પાણી આપમેળે જ સંગ્રહિત થઈને વાપરવા મળે તો જીવન ખૂબ સરળ થઈ જાય.’

અમિત દોશીએ ડિઝાઈન કરીને બનાવેલું ડિવાઈસ

નજરે ન પડતો કચરો પણ આવી રીતે સાફ થઈ જાય
અમિત દોશી જણાવે છે કે, ‘આ ડિવાઈસ બનાવતા પહેલાં અમે વરસાદી પાણી માટેના અલગ-અલગ ચેમ્બર્સ અને ફિલ્ટર્સનો અભ્યાસ કર્યો. જેના જે પણ તારણો આવ્યાં તેનાથી નક્કી કર્યું કે એવું ડિવાઈસ બનાવીએ જે સસ્તું હોય, વૈજ્ઞાનિક રીતે પણ સારી ક્વોલિટીનું હોય, વધુ પડતી જગ્યા ન રોકે, દીવાલ પર લાગી જાય, વરસાદી પાણીનો સંગ્રહ થતો હોય તેને મૉનિટર કરી શકાય, કોઈ પણ મેન્ટનન્સ ન આવે, ઝીણામાં ઝીણો કચરો ફિલ્ટર થઈ જાય, પાણીનો વેડફાટ ન થાય, કોઈ પણ પ્લમ્બર તેને સરળતાથી લગાવી શકે. આવા મુદ્દાઓને ધ્યાનમાં રાખીને એક બાય દોઢ ફૂટના ડિવાઈસની ડિઝાઈન તૈયારી કરી. જેમાં બધું જ પાણી 400 માઈક્રૉનના પહેલા ફિલ્ટરમાંથી અને 200 માઈક્રૉનમાં બીજા ફિલ્ટરમાંથી પસાર થાય છે. એટલે નાનામાં નાના કણ પણ અને કચરો રોકાઈ જાય છે. આમ શુદ્ધ વરસાદી પાણીનો સંગ્રહ થઈ શકે છે. એ પાણી પાઇપ દ્વારા સીધું જ ટાંકી, બોરવેલ અથવા કૂવામાં લઈ શકાય. આ પ્રક્રિયામાં એક પણ ટીપું વેડફાતું નથી.’

ધાબા પરથી કેટલું ચોખ્ખું પાણી મળે?
‘1200 સ્ક્વેર ફૂટનું ધાબું હોય તો 2 ઈંચ વરસાદમાં 4 હજારથી સાડા 4 હજાર લિટર પાણી મળે. અમદાવાદનું ઉદાહરણ આપું તો આખી સિઝન 60થી 65 હજાર લિટર પાણી મળે. એ પાણી શુદ્ધ હોય છે, સ્વાસ્થ્ય માટે પણ સારું હોય છે. ફ્લેટમાં જો 5 હજાર સ્ક્વેર ફૂટનું ધાબું હોય તો 2 ઈંચના વરસાદમાં 25 હજાર લિટર પાણી મળે. એટલે આખી સિઝન 3 લાખ લિટર પાણી મળે. આ પાણીનું સંચય ન કરવામાં આવે તો ધાબા પરથી જમીન પર આવે અને રસ્તા પર પાણી ભરાઈ જાય. એટલે એ જ પાણી આપણને ઘણું નુકસાન કરે છે. અમે બનાવેલું ડિવાઈસ લગાવવાથી પહેલાં જ વર્ષે 5 હજાર રૂપિયામાં 60 હજાર લિટર પાણી મળે છે. એની એક લિટરની કિંમત શું થઈ? સાવ નજીવી!’

આવી રીતે બોરવેલમાં પહોંચે છે વરસાદી પાણી
‘બોરવેલમાં 4થી 6 ઈંચની એક કેસિંગ પાઇપ હોય છે. જેમાં એક કોલમ પાઇપ હોય. તેના છેડે સબમર્સિબલ પંપ પાણીમાં ડૂબેલો હોય છે. એ પંપ દ્વારા કોલમ પાઇપ મારફતે પાણી આપણને મળે છે. જ્યારે વરસાદી પાણી ધાબાથી નીચે આવે તેની લાઇનમાં વોટર ફિલ્ટર લગાવી દેવામાં આવે છે. જેથી પાણી ચોખ્ખું થઈ જાય છે. આ પાઇપને બોરવેલની મોટી કેસિંગ પાઇપ સાથે જોડી દેવામાં આવે છે. જેથી વરસાદનું પાણી ચોખ્ખું થઈને બોરવેલમાં જતું રહે. જેના કારણે બોરવેલના પાણીના તળ ઉપર આવે છે અને આખું તળ રિજનરેટ થઈ જાય છે. એટલે બોરવેલને સુકાતો બચાવે છે. બોરવેલના પાણીનું TDS અને હાર્ડનેશ ડાયલ્યુશન ઇફેક્ટથી ઘટે છે.

આ ડિવાઈસમાં લાગેલા ફિલ્ટરને કોઈ પણ વ્યક્તિ આસાનીથી ખોલીને સાફ કરી શકે છે.

ક્યાં-ક્યાં છે આ ડિવાઈસની માગ?
‘અમે નિરેન નામથી ડિવાઈસ લોન્ચ કર્યું હતું. 3 વર્ષમાં 4 હજારથી વધુ ડિવાઈસનું ઈન્સ્ટોલેશન થયું છે. દેશમાં સૌથી વધુ વેચાણ ગુજરાતમાં છે. એ પછી કર્ણાટક, મધ્યપ્રદેશ તમિલનાડુ, કેરળ અને રાજસ્થાનમાં થાય છે. વિદેશમાં આફ્રિકા, નોર્થ અમેરિકા, નેપાળમાં પણ ડિવાઈસ ઇન્સ્ટોલ કર્યા છે. વિદેશમાં સૌથી વધુ 200 ડિવાઈસ નોર્થ અમેરિકામાં લગાવ્યાં છે. કુલ હિસાબ લગાવીએ તો અલગ-અલગ જગ્યાએ થઈને અત્યાર સુધી લગભગ 90 કરોડથી વધુ લિટર પાણી બચ્યું છે. આ સિઝનના આંકડા ઉમેરીએ તો કદાચ 125 કરોડ લિટર સુધી આંકડો પહોંચશે.’

ડિવાઈસની કિંમત અને ઈન્સ્ટોલેશન
‘1200 સ્ક્વેર ફૂટના વિસ્તારમાં વરસાદી પાણીના સંગ્રહ માટે કામમાં આવતું આ ડિવાઈસ 2950 રૂપિયામાં મળે છે. તેની સાથે પ્લમ્બિંગનો ખર્ચ થાય. એટલે 6 હજાર રૂપિયાની અંદર ડિવાઈસ લાગી જાય. 20 વર્ષ સુધી કોઈ પણ પ્રકારની વીજળી કે મેન્ટનન્સ જેવો ખર્ચ આવતો નથી. કોઈ પણ પ્લમ્બર કે સામાન્ય વ્યક્તિ 4 સ્ક્રૂ મારફતે તેને દીવાલમાં લગાવી શકે. ટેક્નિકલ 4 ઈંચનો આઉટલેટ અને 4 ઈંચનો ઇનલેટ છે. મોટાભાગના ઘરમાં સરળતાથી લાગી જાય છે.’

અમિત દોશીએ બનાવેલી પ્રોડક્ટથી વરસાદી પાણીને સાફ કરીને તેનો ટાંકીમાં પણ સંગ્રહ કરી શકાય છે.

’80 ટકા પ્રોડક્ટ અમે રહેણાક મકાનમાં લગાવી છે. જેમાં મોટાભાગના મધ્યમ વર્ગના લોકો ગ્રાહક હોય છે. જ્યારે 20 ટકા ડિવાઈસ અમે ઇન્ડસ્ટ્રીમાં લગાવ્યાં છે. ગુજરાતમાં સૌથી વધુ માગ વડોદરામાં જોવા મળી. ત્યાં આસપાસ નવા ડેવલપમેન્ટ બોરવેલ પર આધાર રાખે છે. બોરવેલ સુકાઈ જવાની ફરિયાદો હતી. હવે બોરવેલ રિચાર્જ થયા એટલે આખું વર્ષ પાણી ઘટતું નથી. ગામડામાં જેમને પોતાના બોર છે એ લોકો, જ્યારે શહેરમાં સંસ્થાઓ અને બંગલામાં રહેતા લોકો વધુ પ્રોડક્ટ લે છે. શરૂઆત કરી એ વર્ષે એટલે કે 2020 માં 5 લાખનું ટર્ન ઓવર હતું. ગયા વર્ષે એક કરોડ રૂપિયાનું ટર્નઓવર ક્રોસ કર્યું. આ વર્ષે ડબલ કરવાનો ટાર્ગેટ છે.’

સરકારે પણ જળ સંચય માટે નિયમ બનાવ્યા છે
અમિત દોશીએ એક કિસ્સો યાદ કરતા કહ્યું, ‘બિલ્ડર સાથે વાત કરીએ ત્યારે તેઓ કહે છે કે, અમે સરકારના નિયમોનું પાલન કરવા માટે જળસંગ્રહની વ્યવસ્થા કરીએ જ છીએ. પણ નિયમોના કારણે થતાં આ કામના લીધે કેટલીક વખત જળસંગ્રહની વાત ફક્ત કાગળ પર જ રહી જાય છે. અમદાવાદમાં દર વર્ષે અંદાજે 15 ટકા બોરવેલ સુકાઈ જાય છે. આ મુશ્કેલીનો સરળતાથી નજીવા ખર્ચે ઉકેલ લાવી શકાય એમ છે.’

‘માત્ર પત્નીને જ જાણ હતી કે નોકરી છોડી દીધી છે’
બે અલગ-અલગ કંપનીઓમાં થઈને લગભગ 17 વર્ષ નોકરી કર્યા બાદ પોતાનો બિઝનેસ શરૂ કરવામાં કેવી મુશ્કેલીઓ આવી, તે અંગે વાત કરતા અમિત દોશી કહે છે કે, ‘મેં સિન્ટેક્સમાં નાના ડસ્ટબિનથી લઈને 300 કરોડ રૂપિયા સુધીના પ્રોજેક્ટ પર કામ કર્યું હતું. પરંતુ જ્યારે નોકરી છોડી પોતાનો ધંધો કરવાનો વિચાર આવ્યો ત્યારે નક્કી કર્યું હતું કે ક્યારેય હું બિઝનેસ નહીં કરું. કારણ કે વર્ષ 1997થી બનાવેલી ગુડવિલ અને સંબંધોનો સવાલ હતો. મેં નોકરી છોડી, ત્યારે 2 વર્ષ સુધી ઘરમાં કેટલા રૂપિયાની જરૂર પડશે તે નક્કી કરીને 4 લાખ રૂપિયા અલગ રાખી દીધા હતા. નોકરી છોડી તેની બે વર્ષ સુધી મારા ઘરમાં પત્નીને જ જાણ હતી. કારણ કે જો આ વાત બહાર જાય તો બીજા લોકો કહેતાં કે આટલી સારી નોકરી કેમ છોડી? લોકોને નોકરી મળતી નથી. આવા સવાલોથી હું બચી ગયો. કારણ કે આવી વાતોથી મારી અને પરિવારની માનસિકતા પર નકારાત્મક અસર થઈ શકે. નોકરી છોડ્યા બાદ મને એ જ કંપનીમાંથી ફોન આવ્યો. હું મળવા ગયો ત્યાં મને કહેવામાં આવ્યું કે, તમે અમારી કંપની કરતાં અલગ ફિલ્ડમાં કામ કરો છો. એટલે તમે અમારી સાથે રહીને કન્સલ્ટિંગનું કામ કરી શકો છો. જેના 50 હજાર રૂપિયા મહિને નક્કી થયા. એટલે મારે ઘરનું ટેન્શન વધુ હળવું થઈ ગયું.’

છેલ્લાં ચાર વર્ષમાં ઘણાં રહેણાક મકાનો અને સંસ્થાઓની ઈમારતોમાં જળ સંચય માટે આ પદ્ધતિ અપનાવવામાં આવી છે.

‘મારા બિઝનેસ માટે બે વર્ષ સુધી ઘરેથી કામ કર્યું. એ પછી 2016માં એક ઓફિસ ભાડે લીધી અને પોતાની પ્રોડક્ટ બનાવવા પર ફોકસ કર્યુ. વર્ષ 2018થી પોતાની ઓફિસ લીધી. ત્યારે જ મેં ડિવાઈસની ડિઝાઈન બનાવી હતી.’

AMC સાથે પણ કરાર કર્યા
‘અત્યારે ભારત સરકારની મદદ લઈને અમદાવાદ મ્યુનિસિપલ કોર્પોરેશન સાથે MOU કરીને 8 સંસ્થાઓમાં આ સિસ્ટમ લગાવી છે. એ માટે ભારત સરકારે 20 લાખ રૂપિયા પણ આપ્યા છે. અમારી પ્રોડક્ટ બનાવવા માટે મશીનરીનો ખૂબ ખર્ચ થાય એમ હતો. ત્યારે સ્ટાર્ટ-અપને પ્રોત્સાહન આપવાના ઉદ્દેશથી ભારત સરકારે ફરી મદદ કરી હતી.’

અમારા હિતધારકો માટે પાણીની પરિસ્થિતિ વિશે જાગૃતિ ફેલાવવા માટે આ લેખ પુનઃપ્રકાશિત કરવામાં નીરૈનને ગર્વ છે. 
જે પણ શ્રેય લેખકને જાય છે.
આ લેખ દ્વારા પ્રકાશિત કરવામાં આવ્યો છે: -
https://www.divyabhaskar.co.in/dvb-original/news/leaving-the-job-of-big-
package-and-made-a-cheap-device-that-cleans-water-neerain-amit-doshi-131546196.html

અમે સાથી ભારતીયોના લાભ માટે આને ફેલાવવા માંગીએ છીએ.

લેખક: સારથી એમ.સાગર
 
આ તારીખે પ્રકાશિત કરો: જુલાઈ 17, 2023.

Institutionalizing Climate Change in Urban Sector Background

India is one of the most vulnerable countries to climate change impacts. Due to combined effect of climate challenges and inadequate urban management, cities are frequently facing climate hazards such as urban flooding, heat waves, cyclonic storms, severe and prolonged dry spells, water scarcity, etc. It is pertinent to mention here that the COP 26 UN Climate Change Conference, took place during October – November 2021 in Glasgow, UK, India committed to net-zero greenhouse gas emission by 2070. By 2020, countries submitted their plans for climate action known as nationally determined contributes (NDCs). Urban sector has to play a crucial role in achieving these commitments. Without involving cities India’s climate goals will not be achieved. This paper first explains server terms and strategies in climate change. Second section briefly describes strategy in Germany which is relevant to urban India. This is followed by actions taken by Indian Government on urban climate change and several local urban initiatives. Finally, it makes recommendations for future action.

Understanding Climate Change

Climate change (CC) refers to the increasing changes in the measures of climate over a long period of time – including precipitation, temperature, and wind patterns. Global warming refers to the rise in global temperatures due mainly to the increasing concentrations of greenhouse gases in the atmosphere, it is part of CC. The Agreement is international treaty on CC adopted by 196 Parties, December 2015. Its goal is to limit global warming to well below2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels.

Photo courtesy: National Oceanic and Atmospheric Administration

Adaptation and Mitigation strategies for climate change are two sides of same coin. Mitigation means making the impacts of climate change less server by preventing or reducing the emission of greenhouse gases (GHG) into the atmosphere. Mitigation strategies include retrofitting building to make them more energy efficient; adopting renewable energy sources like solar, wind and small hydro; electric vehicles, and biofuels. Mitigation is short – to medium term measure and can be expensive. Adaptation involves taking appropriate measures to prevent the effects of climate change. Adaptation – adapting to life in a changing climate and involves long term strategies. Adaptation examples development of drought – resistant crops, Lifestyle for Environment (LIFE) Mission proposed by India. Etc.

Institutionalisation of climate change Germany

As an industrialised nation, Germany bears a particularly large responsibility of reducing emission. The Federal Climate Protection Act passed on 15 November 2019, which was amended in 2021. It prescribes legally binding climate targets with annually decreasing greenhouse gas budgets for the sectors of transport, energy, industry, buildings, agriculture and waste managements in Germany. In 2008, the National Climate Initiative (NCI) was established as the most import national source of funding for energy efficiency and climate protection activities by municipalities, companies, educational institutions and consumers from resources of the energy and climate Change fund (EKF) and the federal budget. A consortium of independent research institutes regularly evaluates the NCL and its funding programmes.

Climate protection managers are of fundamental imports for coordinated and well-anchored climate protection activities in municipalities and contribute significantly to implementing learning processes and making them visible in society. The focus of NCI funding is therefore an attractive start-up funding for personnel to strategically anchor climate protection in municipalities. Another measure to actively integrate climate protection into municipal is the introduction of climate checks.

  1. Presently, Independent Director (Nom – Executive )GIFT City Gujarat, Former Director of school of planning and Architecture (SPA) New Delhi and National Institute of Urban Affairs (NIUA)

  2. Finya Eichhorast and Corinna Altenburg. 2022. “Institutionalisation of climate change in Germany”. German Institut for Urban Affairs/ Deutsches Institut fur Urbanistik gGmbH.

In addition to the actual project funding, the Federal Environment Ministry has set up a Central Knowledge Hub, based at the German Institute of Urban Affairs (DIFU), acts as a central hub for knowledge transfer and is point of contract for all issues relating to municipal climate protection. While Germany has made early efforts and advancements especially in the field of renewable energy, the challenges to achieve the current climate neutrality goal until 2045 are enormous.

Urban India Response

The Ministry of Housing and Urban Affairs (MoHUA) has stated in the revised National Mission on Sustainable Habitat (NMSH 2021) that enabling climate actions intend to address the overarching framework to facilitate adoption and implementation of the sector-wise climate action strategies. These include strategies pertaining to Urban Governance, Capacity Building, Data,Technology & Innovation and Financing mechanism for the mission.

Photo courtesy: Climate centre for cities

MoHUA has undertaken a number of climate sensitive initiatives. It has in 2019, initiated the “Climate Smart Cities Assessment Framework” (CSCAF) as step towards holistic, climate-responsive development. The objective of the CSCAF is to provide a clear roadmap for the cities and, in effect, urban India as a whole towards combating Climate Change (mitigation and adaptation) while planning their actions, including investments. It covers five sectors namely, Urban Planning and green Cover, Energy and Green Building, Mobility and Air Quality, Water Management and Waste Management. The second round of assessment for this framework for 126 Cities was completed in 2021. A “Climate Alliance “has been set up in 2020, which brings together 80 organisations with diverse skills, strengths and resources required for planned Climate action. The CSCAF indictors have been included in the revised National Mission on Sustainable Habitat (NMSH) document that was released in 2021 and will help in making climate action mandatory for all cities in India. Climate Centre for Cities (C-cube) has been established with the National Institute of Urban Affairs (NIUA) in 2020.

Local Urban Initiatives

Many cities have taken several sustainable initiatives such as promoting public transport, walking and non-motorised transport, developing Miyawaki forests, introducing energy saving LED Street light, solar panels, electric autos, decentralised collection and treatment of solid waste, and nature-based treatment of sewage. It is interesting to note that many Cities have prepared city climate actions plans. These include Rajkot, Surat, Coimbatore, Kochi, Udaipur etc. Maharashtra State Government has given a mandate to 45 large cities to prepare city climate action plans. Rajkot and Udaipur Climate Resilient City Actions Plans have been approved by their General Boards. Various mitigation and adaptation interventions have been identified for Rajkot based on GHG emission inventory and urban system analysis in line with existing city planning and future projects.

The Brihanmumbai Municipal Corporation (BMC) has prepared a Mumbai Climate Action Plan (MCAP) in a bid to tackle climate challenges. MCAP included climate resilience with mitigated and adaptation strategies by focusing on six area sustainable waste management, urban greening and biodiversity, urban flooding and water resource management, building energy efficiency, air quality, and sustainable mobility.

With reference to climate change related financing, the Ghaziabad Nagar Nigam (GNN) has led the way by issuing green bonds in April 2021. The issuance of green bonds in India are governed under relevant SEBI regulations in 2017 SEBI and funds raised through issuance of the debt securities are to be utilised for projects which fall under renewable and sustainable energy, clean transportation, sustainable water and waste management and climate change adaptation.

Way Forward

Although urban India has taken several steps to integrate urban climate change in urban sector, more efforts are required to mainstream in the urban sector in India at national, state and city level. Capacity building efforts under urban climate change should be further intensified and also support private sector. Additionally, there is need to integrate climate change issues in the Urban and Regional Development Plan Formulation (URDPFI), Guidelines, GIS based master Plan Guidelines, Model Municipal Law 2003 and model Building Bye Laws. There is need to provide specific funding for urban climate change projects and this will require justification of urban climate change funding. Besides, provide incentives for urban climate change actions. Local research and academic institutions should be encouraged to work with cities and state on urban climate change. Innovations have to be through start-ups and urban labs. Moreover, a research study on impact of updated climate targets on projected urbanization pattern should be supported by the Government.

Neerain is proud to republish this blog for spreading awareness about situation of water, for our stake holders. Credit whatsoever goes to the Author.

This blog is published by: –

SOCLEEN Magazine – February 2023

Author: Chetan Vaidya

Published on: February, 2023